
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Measuring the Natural Rate of Interest: Alternative
Specifications

Kurt F. Lewis and Francisco Vazquez-Grande

2017-059

Please cite this paper as:
Lewis, Kurt F., and Francisco Vazquez-Grande (2017). “Measuring the Natural
Rate of Interest: Alternative Specifications,” Finance and Economics Discussion Se-
ries 2017-059. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2017.059.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Measuring the Natural Rate of Interest:

Alternative Specifications∗

Kurt F. Lewis† Francisco Vazquez-Grande‡

Current version: May 22, 2017

First version: February 15, 2017

Abstract

We build on the work of Laubach and Williams (2003) and subsequent studies by ana-

lyzing the effect on the estimates of the natural rate of interest (r∗) of accounting for full

parameter uncertainty and alternative specifications for the underlying components of

the natural rate. Our estimation technique delivers richer time-series dynamics for the

median estimate of r∗ within the Laubach and Williams model. Additionally, we find

that models with transitory shocks to the non-growth component of the natural rate

have a higher marginal likelihood and produce an upward-sloping post-crisis trajectory

of the r∗ path and thus a higher recent median point estimate (1.8% in 2016:Q3).
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1 Introduction

For central banks that use a short-term interest rate as their main policy tool, the “natu-

ral” or “equilibrium” rate of interest is of crucial importance for the conduct of monetary

policy. This is because the natural rate provides a measure of whether the stance of policy

is contractionary or expansionary, which is still informative even after reaching the effective

lower bound of short-term interest rates. We follow Laubach and Williams (2003) and use

the definition for the natural rate (r∗) from Bomfim (1997): the real short-term interest

rate consistent with output converging to potential, where potential is the level of output

consistent with stable inflation and is therefore the medium-term real rate for the conduct

of monetary policy and the intercept in Taylor-type rules.1

r∗ is unobservable and it is well-documented that the range of r∗ estimates for the U.S.

economy across models is fairly wide and that within individual models the uncertainty about

the level of r∗ is high. However, in recent years there has been a public discussion among

policymakers centering around the question of whether r∗ has declined to new depths, and

whether it may ever rebound (see, for example Yellen, 2015 and Williams, 2016, 2017). In

several cases financial “headwinds” and the role of the non-growth components of r∗ have

been cited as important contributors to its low level since the great recession (e.g. Williams,

2015). Our analysis demonstrates that within a well-known central bank model of r∗, changes

in estimation strategy and model specification can change the median path of r∗ estimates

in economically significant ways.

In this paper we build on the work of Laubach and Williams (2003, 2016) and provide

alternative estimates of the natural rate by varying the estimation technique to account for

full parameter uncertainty, as well as by making small changes to the model specification

driving the dynamics of the unobserved components of the natural rate. Our estimation

technique employs Bayesian methods to incorporate the uncertainty of all the model param-

1Recent literature (Kiley and Roberts, 2017, for example) show that these simple rules can work badly
in the vicinity of the effective lower bound.
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eters jointly into the estimate of r∗ under loose priors. In contrast to much of the extant

literature we do this in a single step, rather than the three-step process of Stock and Watson

(1998) used by Laubach and Williams (2003) and subsequent work. Within this framework

we also explore alternative specifications for the latent processes that drive the natural rate.

As in Laubach and Williams (2003, 2016) we consider r∗ to be driven by two hidden process,

one that controls the rate of growth of potential output and another that represents the

persistent non-growth component of interest rates. In this paper we revisit whether the two

components of the natural rate follow random walks and find that, in contrast to the first

investigations, there is some evidence that the data do not indicate a unit root in non-growth

component of r∗. Following our analysis, we briefly discuss how the non-growth component

of the estimated natural rate may account for changes in the intratemporal ratio of marginal

utilities, in excess of expected consumption growth, and how these changes can be attributed

to financial shocks.

By incorporating the uncertainty of estimating all the parameters jointly in a single

step under uninformative priors—but using the Holston, Laubach, and Williams (2016)

model specification—we obtain richer time-series dynamics of r∗. Our estimation shows

deeper drops during recessions, with subsequently larger increases during recoveries, than

the estimates obtained from maximum likelihood methods. Our median path of the natural

rate also shows a different trajectory since the end of the Great Recession, and we obtain

an increase since the trough in 2008, in contrast to the “non-recovery” displayed of the U.S.

estimate in Holston, Laubach, and Williams (2016).

We explore alternative specifications without permanent shocks on the non-growth com-

ponent of r∗ and find an elevated level of the median estimate after the great recession,

about 1.75% higher than that of Holston, Laubach, and Williams (2016) in the third quarter

of 2016. The dynamics of the non-growth component are hard to estimate, a finding which

mirrors the original results of Laubach and Williams (2003) as well as Kiley (2015). When

this process is not assumed to be a random walk, we estimate a greater recovery of the
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natural rate since the lows of the Great Recession, reaching 1.8% at the end of the third

quarter of 2016. We therefore infer that permanent shocks to the non-growth component of

the natural rate are needed to produce a persistent low level of r∗ after the Great Recession.

This paper follows on a strain of the literature of empirical macroeconomics started by the

work of Laubach and Williams (2003), which has been extended in different ways. Lubik and

Matthes (2015) use a time-varying parameter vector-autoregression model, which allows for

more nonlinear relationships than the structure of the original Laubach and Williams (2003)

study, and find a similar secular decline in the level of r∗. Some of the more recent literature

has also pursued a Bayesian approach to the investigation of r∗. Kiley (2015) removes the

dependence of r∗ on potential output growth and finds that the remaining non-growth-based

natural rate is very difficult to identify, a finding with which our analysis of the non-growth

r∗ component concurs. Johannsen and Mertens (2016) include stochastic volatility and an

effective lower bound of interest rates in the measurement and state equation, but maintain

the random walk assumption of potential output growth and find a level of r∗ slightly lower

than that reported in Holston, Laubach, and Williams (2016). Pescatori and Turunen (2016)

follows an approach similar to our own in starting with the standard Laubach-Williams

definition for r∗, but makes use of tight priors on the parameters of some of the unobserved

components and addresses other issues by bringing in additional information to the model

such as outside estimates of the output gap, “shadow” interest rates to help account for

the zero lower-bound, and data on savings and economic uncertainty to aid the non-growth

component. Also related, Del Negro et al. (2017) use macroeconomic series as well as financial

and survey data to estimate a VAR with shifting endpoints and a DSGE model with highly

persistent financial shocks to conclude that the low level of r∗ is mostly due to an increase in

the premium for safety and liquidity, what in our model would be attributed to an persistent

decline in the non-growth component of the natural rate.

An important element of the recent empirical work is evident in Kiley (2015) and the

primary focus of Hamilton, Harris, Hatzius, and West (2016), who call into question the rel-
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evance of the growth of potential GDP in the dynamics of r∗.2 Almost every macroeconomic

models postulate a relation between expected growth of potential output and r∗, in their

analysis Hamilton et al. suggests that the connection between ex post real interest rates

and realized real GDP growth is statistically limited. We take this insight to modify the r∗

equation of Laubach and Williams and relate the level of the natural rate to the expected

level of future output growth and the expected level of a non-growth component.3

Our paper shows that Bayesian analysis of the original model Laubach and Williams

under uninformative priors calls into question the finding that the level of r∗ has been in a

secular decline since the early 2000s. Further, a simple (and data-supported) change to the

dynamics of the non-growth component of r∗ can give rise to a median path with an upward

trend over the past 6 years that has already returned r∗ to roughly its pre-crisis level.

This paper is organized as follows, section 2 describes the model and specifications to be

estimated. Section 3 describes our estimation procedure. Section 4 comments on the results

and 5 concludes.

2 The r∗ Model

2.1 Model structure

The fundamental model closely follows that of Laubach and Williams (2003, 2016) (hence-

forth referred to as LW) and features an output gap equation, an inflation equation and the

evolutions of unobserved variables such as the level and growth rate of potential GDP and

2Clark and Kozicki (2005) also note the challenge of using any estimate of potential output growth in
“real-time”, but in the present paper we set aside real-time concerns to look at the broader trends implied
by the path of r∗ over the past 50 years.

3Note that this does not limit our ability to compare our results to those of Laubach and Williams, as
under their dynamics for the hidden processes, both models are isomorphic.
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the natural rate of interest. The six equations at the heart of our exercise are:

ỹt = a1ỹt−1 + a2ỹt−2 +
ar

2
(r̃t−1 + r̃t−2) + σ1ε1,t (2.1)

πt = b1πt−1 + (1− b1)
4

∑

i=2

πt−i

3
+ byỹt−1 + σ2ε2,t (2.2)

r∗t = Et (gt+1 + zt+1) (2.3)

zt = ρzzt−1 + σ3ε3,t (2.4)

y∗t = y∗t−1 + gt−1 + σ4ε4,t (2.5)

gt = µg (1− ρg) + ρggt−1 + σ5ε5,t (2.6)

where yt is 100 times the natural log of real GDP in period t, y∗t is the potential GDP analog

of this value and ỹt = yt − y∗t . Similarly, r̃t = rt − r∗t where rt is the real short-term interest

rate in period t, defined as the nominal short-term rate less inflation expectations for that

period, and r∗ is the “natural rate of interest” which is the focus of this study.

Note that our specification of r∗ coincides with that of LW when using their dynamics

for gt and zt, that is, when ρg and ρz are assumed to be equal to 1.

Substituting the formula for r∗t−1 in equation (2.3) into the output gap specified by equa-

tion (2.1), and rearranging to construct the traditional observation/transition equation struc-

ture, we can write the system of equations (2.1) to (2.6) in state space form.

st = Ast−1 + But + Cwt (2.7)

xt = Dst + Fut +Gwt (2.8)

where the state vector (st) contains the level of potential GDP (as well as two lags), in

addition to two lags each of gt and zt. The observed variables (xt) are real GDP and

inflation, the lags of which are treated as exogenous variables (ut) along with the lags of the

real rate. We specify each of the shocks in wt to be an i.i.d.N(0, 1) and estimate the variance

of the shock processes in the system using the σi parameters. Further specifics regarding the

state space formulation are available in Appendix A.
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Table 1: Model Reference

Model

Parameter I II III IV

ρg 1 Estimated 1 Estimated

µg Unidentified Estimated Unidentified Estimated

ρz 1 1 Estimated Estimated

Notes: The four model specifications examined in the paper vary the
dynamics of the processes for the gt and zt processes by restricting their
autoregressive coefficients to be 1 or to be estimated. When gt is allowed
to be stationary, the unconditional mean is also estimated but when gt is
a random walk, the unconditional mean is unidentified.

2.2 Alternative specifications

We examine different combinations of dynamics for the gt and zt process and the effects of

these alternative specifications on the median path of the r∗ estimate.

The first specification tested will be the one that most closely replicates the results of

LW. That is, Model I sets ρg = ρz = 1 as in LW but uses the standard Bayesian methods

discussed below to estimate the model.In this specification, shocks to both the growth rate

of potential GDP and to the z process are considered to be permanent.

The second specification estimates the persistence and mean of the process for potential

GDP growth. That is, in Model II, both ρg and µg are estimated while ρz = 1. The

third specification returns the permanence of shocks to the path of potential GDP growth

but estimates the persistence of the shocks in the zt process. Finally, Model IV estimates

the parameters of both processes jointly. See Table 1 for a concise reference on the model

differences.

Note that—unlike the process for potential GDP growth—we do not estimate an uncon-

ditional mean for the zt process, or rather we assume that mean is zero. We interpret zt to

be playing more of a “head-winds” roll in this reduced form model and as such expect its

unconditional mean to be zero. A more systematic investigation of the possible economic

drivers of the zt process is the subject of ongoing work by the authors.
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3 Estimation Procedure

3.1 Data

To facilitate result comparison, the data used in this analysis is the same as the data used in

Holston, Laubach, and Williams (2016), and it is transformed in the same way.4 Real GDP

data are obtained from the BEA, inflation is calculated as the annualized quarterly growth

rate of the price index for personal consumption expenditures excluding food and energy

(commonly referred to as “core PCE inflation”). We follow Holston, Laubach, and Williams

(2016) in using a 4-quarter moving average of inflation in period t as a proxy for inflation

expectations in that period. The short-term interest rate is the annualized nominal effective

federal funds rate, where the quarterly value is constructed as the average of the monthly

values. Prior to 1965, we use the Federal Reserve Bank of New York’s discount rate.

3.2 Bayesian Estimation

Because we implement a fully Bayesian methodology we do not employ the three-step process

developed in Stock and Watson (1998) and used in Laubach and Williams (2003, 2016).

That process was put in place as a way to deal with the so-called “pile-up” problem when

estimating models of this type with maximum likelihood. As demonstrated by DeJong and

Whiteman (1993) and Kim and Kim (2013), Bayesian methods do not suffer from the “pile-

up” problem and thus we proceed with the one-step estimation discussed above. In order

to confirm that our structure nests that of the literature that has followed Laubach and

Williams (2003), we have estimated a version of the model that imposes the restrictions

implied in the three-step process and recover the median path of r∗ for the U.S. reported in

Holston, Laubach, and Williams (2016).5

4See the data appendix in Holston, Laubach, and Williams (2016) for additional specifics on obtaining
the data.

5Specifically, we impose the values for λg = σg/σy∗ and λz = arσz

σỹ

which are estimated by the HLW

model in their first and second steps and which are then imposed during the final step.
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Each version of the state space model outlined in section 2 is estimated using standard

Bayesian methods.6 Formally, after specifying the priors, we construct the likelihood from

the linear-Gaussian filter output and use the random-walk Metropolis-Hastings algorithm

to generate draws from the posterior distributions of the model parameters. Each draw of

the parameters from the posterior distribution implies a filtered path for the unobserved

variables, including r∗.

3.3 Prior Distributions

From equations (2.1) to (2.6), we construct the vector of model parameters:

θ = [a1 a2 ar b1 bY ρg µg ρz σ1 σ2 σ3 σ4 σ5] .

The prior distributions for the model parameters were chosen with a mind toward minimal

informativeness and to enforce a few restrictions, most of which were inherited from the

Laubach and Williams (2003) structure. For consistency with their paper, we enforce that

ar be negative and bY positive just as was done in Holston, Laubach, and Williams (2016).7

Similarly, as the sum of the coefficients on lags of inflation must sum to 1, we restrict b1 to be

between 0 and 1. Because of our expectation of a positive autocovariance for both gt and zt

in the event of stationarity, we restrict ρg and ρz to be positive. The priors on the standard

deviations of the shock processes (σi’s) are assumed to be uniform, inclusive of zero, with

a maximum we set to 5. The summary of the prior distributions used is given in Table 2.

Regarding implementation of the priors for ρg and ρz, when those parameters are set to one

in the models the priors are changed to be degenerate at one.

6Popularized by Tierney (1994) and Chib and Greenberg (1995, 1996), examples of textbook treatments
of this approach can be found in Geweke (2005) and Herbst and Schorfheide (2015).

7We follow their practice of using ar < −0.0025 and bY > 0.025 as the actual restrictions.
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Table 2: Prior Distributions

Name Domain Density Parameter 1 Parameter 2

a1 R Normal 0 2

a2 R Normal 0 2

ar R
− Normal 0 2

b1 [0, 1] Uniform 0 1

bY R
+ Normal 0 2

ρg R
+ Normal 0 2

µg R Normal 0 2

ρz R
+ Normal 0 2

σ1 [0, 5] Uniform 0 5

σ2 [0, 5] Uniform 0 5

σ3 [0, 5] Uniform 0 5

σ4 [0, 5] Uniform 0 5

σ5 [0, 5] Uniform 0 5

Notes: The table presents the marginal prior distributions for
the individual model parameters. The prior distribution pa-
rameters are the mean (1) and standard deviation (2) for those
with Normal distributions and the end-points of the domain in-
terval for uniform distribution. The domains of ar, bY , ρg and
ρz are truncations of the standard form of the prior density.

4 Results

The median path of r∗ under all of the model specifications studied in this paper displays

richer time-series dynamics than that which is estimated using the Laubach and Williams

(2003)-style techniques. Said another way, it appears that the MLE strategy results in fairly

small estimates of σ3 and σ5 which feeds into a smaller estimate of the time series standard

deviation of r∗. This is because, in the multi-step strategy some unobservable parameters

are fixed to their MLE estimate in the last step of the estimation.

Figure 1 shows the path of r∗ estimated under the assumption that both gt and zt

are random walks (Model I). The blue line in Figure 1 (and all subsequent plots of r∗)

represents the median estimated path of r∗ while the red line provides the median path

from Holston, Laubach, and Williams (2016), which will be included for reference whenever
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Figure 1: r∗ Path (Model I)

Notes: The path of r∗ under Model I when ρg = ρz = 1. The

solid blue line shows the median path of the smoothed (two-sided)

estimate and the blue-shaded area is bounded by the 10th and 90th

percentiles of the estimated path. The red line is the two-sided r∗

path for the U.S. from Holston, Laubach, and Williams (2016). The

vertical shaded bars represent NBER-dated recessions.

alternative models of r∗ are shown. The change in estimation technique generates a non-

trivial difference in the median path insofar as the natural rate of interest seems to respond

much more quickly to adverse shocks and to have some bounce-back following recessions.

While there is a still somewhat of a secular decline in the median r∗ path estimated in Model

I, the recent trajectory of that path is markedly different. Both the estimates fall during

the Great Recession, but Model I’s estimate plummets and begins a recovery immediately

following the recession. That recovery is slow and ultimately ends up in roughly the same

place as the last estimated value in the LW series, but the last 6 years of the two paths tell

a different story. The path estimated in LW drops during the great recession, then the rate

of decline slows dramatically, but no recovery in r∗ is apparent.

Before moving on to the path of r∗ under additional models, it is important to note that
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Figure 2: r∗ Path (Model II)

Notes: The path of r∗ under Model II when ρz = 1 but ρg and

µg are estimated. The solid blue line shows the median path of the

smoothed (two-sided) estimate and the blue-shaded area is bounded

by the 10th and 90th percentiles of the estimated path. The red line

is the two-sided r∗ path for the U.S. from Holston, Laubach, and

Williams (2016). The vertical shaded bars represent NBER-dated

recessions.

all of the paths for r∗ estimated in this paper are not statistically significantly different from

the LW estimated path. As seen in Figure 1, the level of uncertainty about the path of r∗ is

fairly high and we cannot reject the LW path based on our analysis. Similarly, our paths fall

within the confidence bands given by LW. That said, the differences in the dynamics of the

two paths may lead to important policy implications. For example, aside from the recent

trajectory just discussed, our estimates cannot reject an r∗ path which is constant at around

2%.

Allowing for the growth rate of potential GDP to be an estimated process which could

be stationary (Model II) changes the median estimated path of r∗ only slightly relative to

Model I. As can be seen in Figure 2, the volatility of the median path is slightly higher than
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Figure 3: Posterior of µg
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Figure 4: Posterior of ρg
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Notes: The growth process parameter posterior distributions for Model II. In the

panel to the left, µg represents the unconditional mean in the AR(1) process and

therefore the average quarterly growth rate of potential real GDP. In the panel to

the right, ρg is the persistence parameter for the AR(1) process.

in Model I, and the decline followed by bounce-back around recessions is somewhat stronger.

The post-crisis trajectory of r∗ under Model II is similarly one of a bounce that is tempered

over time and concludes near the end of the Holston, Laubach, and Williams (2016) path

for r∗, as it did in Model I.

Estimating the growth process in a manner that allows for the possible stationarity

allows us to get estimates of the average quarterly growth rate of potential GDP and to

investigate the value of modeling the process as a unit root. Figure 3 shows that the posterior

distribution of µg peaks around 0.7, giving us a reasonable average quarterly growth rate

of potential GDP. Figure 4 shows that while the posterior distribution of ρg peaks below 1,

there is significant mass on 1, giving some support to the unit root model of potential GDP.8

Model III goes back to modeling the growth process for potential real GDP as a random

walk. However, it permits the non-growth component of r∗ (zt) to be modeled as a zero-mean

AR(1) process. This allows the flexibility for non-permanent shocks that could resemble

something more transitory that would appear to be so-called “headwinds.” The resulting

8Whenever ρg or ρz are estimated, note that they are not restricted to be less than 1. The maximum
value in the posterior distribution of gt in Model II is around 1.04.
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Figure 5: r∗ Path (Model III)

Notes: The path of r∗ under Model III when ρz is estimated but

ρg = 1. The solid blue line shows the median path of the smoothed

(two-sided) estimate and the blue-shaded area is bounded by the

10th and 90th percentiles of the estimated path. The red line is the

two-sided r∗ path for the U.S. from Holston, Laubach, and Williams

(2016). The vertical shaded bars represent NBER-dated recessions.

path for r∗ is shown in Figure 5.

In addition to the higher volatility and the much larger impact of the Great Recession

on the level of the median path of r∗, the post-crisis profile of r∗ is very different than in

Model I or Model II. Following the sharp dip and bounce-back in the aftermath of the Great

Recession, the median path of r∗ has generally trended in a positive direction. Under Model

II, the recovery from negative values of r∗ was also fairly swift, but has been followed by

a median path of r∗ which was essentially flat over the past five or six years. In Model III

however, while the pace of recovery in the level of r∗ following the Great Recession slowed by

late-2010, it has persisted. The trend over the past five or six years has remained positive,

meaning that the small change to the model of the non-growth component had an important

effect on the median path of r∗.
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Figure 6: zt (Model I) Figure 7: zt (Model III)

Figure 8: gt (Model I) Figure 9: gt (Model III)

Notes: The paths of the non-growth component of r∗ under Model I and

Model III are shown in the top row (Figures 6 and 7). The paths of the

quarterly growth rate of potential real GDP under Model I and Model III

are shown in the bottom row (Figures 8 and 9. Model I assumes that zt is

a unit root process while Model III estimates an AR(1) process with a zero

mean.

Indeed, the path of the zt process is significantly different under the assumption of per-

manent shocks. Figures 6 and 7 show the contrast in behavior of the median zt path in the

21st century. Though the path recovers a little in the years following the Great Recession,

but in Model I the median path of zt appears to be grinding steadily lower. Under this spec-

ification, this more-noticeable secular trend to zt makes it clear how the differences between

the paths of r∗ in Models I and III is driven primarily by the behavior of zt. This is apart

from the reality that Model III allows for permanent shocks to growth. Figures 8 and 9

show that the change to stationary zt has very little effect on the path of the growth rate
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Figure 10: Posterior of ρz
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Notes: The posterior distribution of the coefficient

in the AR(1) process for zt in Model III, ρz.

and that growth in Model III continues to be weak, as in Model I. That is, even modeling

growth in such a way as to allow for secular stagnation (e.g. Summers, 2014 and Eggertsson,

Mehrotra, and Summers, 2016), the median path of r∗ shown in Figure 5 still shows a slow

and steady recovery when zt has transitory shocks.

Model III attempts to estimate the autoregressive dynamics of the zt process rather than

assume all shocks are permanent. In doing so, we confirm that the zt process is fairly difficult

to estimate. By looking at equations (2.1) to (2.6) we can see that zt is going to be more

difficult to estimate than the processes associated with potential GDP. The observables allow

for a more-or-less traditional decomposition of real GDP into trend and cycle, which gives

more information about potential GDP and its growth rate than is obtained about zt through

the rate-gap element of the output gap in equation (2.1). This leads to a fairly imprecise

estimate of the AR(1) process for zt, which can be seen in Figure 10.

The estimate of ρz is less precise than the estimate of ρg in Model II, which is expected

given that there is fairly little information used to filter its value. It has been acknowledged

that zt is a hard object to estimate well by Laubach and Williams (2003) and subsequent

papers in the Laubach and Williams mold. Indeed, Kiley (2015) doesn’t use the growth rate
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of potential GDP in calculating r∗ (leaving r∗, in LW parlance, as essentially just zt) and

finds the zt analog to very challenging to estimate, with many of its properties derived mostly

from the priors chosen by the modeler. But, we can see from the posterior distribution in

Figure 10 that—unlike the coefficient in the AR(1) process for growth in Model II—there

appears to be less evidence that shocks to the zt process are permanent. We return to this

shortly.

The final specification, Model IV, allows for joint estimation of AR(1) dynamics in both

the gt and zt processes. The resulting path of r∗, shown in Figure 11 has similar contours to

that of Model III, but is shifted up somewhat as a result of the potential for mean reversion

in the growth of potential GDP. When both processes are estimated, the median level of

r∗ at the end of 2016 is almost 2 percentage points higher than that estimated in Holston,

Laubach, and Williams (2016).

4.1 Model Comparison

It is important to recall that the paths of r∗ shown here are not statistically significantly

different from HLW. This can be seen by the fact that (by and large) the HLW path of r∗

lies inside the shaded region for our path of r∗ in each of the four models shown in Figures

1, 2, 5, and 11. However, there is some evidence that the data prefers not to assume a unit

root in zt. To demonstrate this, we find the Bayes factor in favor of Model III over Model I.

We construct this Bayes factor using the Savage-Dickey density ratio introduced by

Dickey (1971), which allows us to easily build a Bayes factor for nested models. Specifi-

cally, the Savage-Dickey density ratio can be used to construct the Bayes factor when one

model can be converted to the other model by setting a parameter to a specific value. In the

case of Models I and III, we can see that Model III reduces to Model I when ρz ≡ 1.9 When

9An additional assumption that must be satisfied to use the Savage-Dickey density ratio is that the priors
be “separable.” A sufficient condition for this (see, for example, Verdinelli and Wasserman, 1995) in the

case of models I and III is that pIII(ρz, θ̂) = pIII(ρz)pI(θ̂) where θ̂ is the vector of estimated parameters
excluding ρz and pi(·) is the prior distribution under model i.
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Figure 11: r∗ Path (Model IV)

Notes: The estimated path of r∗ under Model IV when ρz, µg and

ρg are all estimated. The solid blue line shows the median path of the

smoothed (two-sided) estimate and the blue-shaded area is bounded

by the 10th and 90th percentiles of the estimated path. The red line

is the two-sided r∗ path for the U.S. from Holston, Laubach, and

Williams (2016). The vertical shaded bars represent NBER-dated

recessions.

this is the case, the Bayes factor can be written in terms of the output of the estimation

process for the unrestricted model, in our case model III:

BIII,I =
pIII(ρz = 1)

pIII(ρz = 1|Y )

where pIII(ρz = 1|Y ) is the value of the pdf of the marginal posterior distribution for ρz

under Model III at ρz = 1, and pIII(ρz = 1) is the value of the pdf of the prior on ρz

evaluated at 1, also under Model III. Both of these objects are readily available.10 The

concept is illustrated in Figures 12 and 13.

We find that BIII,I = 9.2, which according to the table in Appendix B of Jefferys (1961),

10The draws from the marginal posterior of ρz are used to build a smoothed marginal density from which
we can determine the pdf value at 1. The prior is a truncated normal distribution so the value is easily
calculated.

17



Figure 12: Prior and Posterior of ρz
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Figure 13: Area around ρz = 1
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Notes: An illustration of the Savage-Dickey density ratio. Figure 12 shows the marginal

posterior distribution of ρz under Model III (the solid blue line) and the prior distribution

over the same interval (the dashed red line). The vertical gray dashed line indicated where

ρz = 1. Figure 13 shows the same distributions expanded around the region where ρz = 1.

The red circle indicates the pdf value for the prior at ρz = 1, and the blue diamond indicates

the pdf value for the marginal posterior at 1.

is “substantial” evidence in favor of model III. Kass and Raftery (1995), who develop their

own scale for Bayes factors label this as “positive” evidence in favor of Model III.11 We

also considered an alternative prior distribution, ρz ∼ N(1, 0.52). Under this prior, we are

placing much more weight on the possibility that shocks to the non-growth component of r∗

are permanent, but it had very little effect on the marginal posterior distribution of ρz while

increasing the prior probability significantly. From a model comparison standpoint using

Bayes factors, that means:

BIII,I =
pIII(ρz = 1)

pIII(ρz = 1|Y )
≈

0.352

0.038
= 9.2

B̂III,I =
p̂III(ρz = 1)

p̂III(ρz = 1|Y )
≈

0.816

0.048
= 17.1,

where BIII,I is the factor under the original prior and B̂III,I is the factor under the alternative

prior. That is, when we rewrite the prior to give more weight to the hypothesis of permanent

11In both ranking systems, this grade of evidence is considered the second level, with the next level labeled
“strong” and further levels labeled “very strong” or “decisive.”
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shocks to the non-growth component of r∗, the changes to the marginal posterior of ρz are

almost imperceptible. As a result, the alternative Bayes factor increases as the data continue

to prefer stationary processes for zt despite the tighter prior around the unit root hypothesis.

While the evidence is not conclusive, it favors a model in which zt may be stationary.

Similar tests are insignificant for gt (particularly when ρz and ρg are jointly estimated in

Model IV), as one might expect based on the posterior weight on ρg = 1 in Figure 4. We

note that these tests are only tests against a certain type of permanent shocks. We are not

testing, for example, against the possibility that zt or gt have structural breaks.

4.2 Discussion of the nature of zt

The remainder of the section discusses some implications of the results of our study. These

results raise the importance of the non-growth component of r∗, zt, the “special sauce” of

Laubach and Williams (2003) (as referred to by Williams, 2015). Given the importance of

the permanent shocks in zt to the secular decline in r∗ since 2000, it becomes crucial to

understand what economic phenomena is driving the zt process.

One connection to economic theory is to return to the original Laubach and Williams

(2003) motivation of deriving the r∗ formulation from a linearized Euler equation. Thus, for

a stochastic discount factor (SDF) St, we could write:

e−r∗
t = Et [St+1] (4.1)

and then consider an SDF that diverges from that of log-utility by an extra term Zt, similar

to the methodology of Campbell and Cochrane (1999) and others. For example:

r∗ = logEt

[

Ct+1

Ct

Zt+1

]

= logEt

[

egt+1+zt+1
]

≈ Et [gt+1 + zt+1] , (4.2)

where zt can be interpreted as an asset pricing term that measures the separation from log

utility of the SDF. We interpret this as a theoretically-founded way of using zt to talk about

headwinds. In this case zt can represent any state-variable that modifies the expected ratio

of marginal utilities of the representative agent, in excess of expected output growth. Many
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possibilities could be entertained, for example: changes in aggregate risk-aversion, changes

in aggregate wealth, changes in the probability of a large shock (“disaster”), or the lingering

effects of a financial crisis.

Still, our analysis reveals that despite the nature of the zt process, the existence of a unit-

root is necessary to obtain a subdued level of the estimate of the natural rate of interest since

the great recession. Also the common interpretation of zt as financial “headwinds”, together

with our analysis, would imply that these headwinds would need to be “permanent” in nature

to justify a low level of the estimated r∗. Further study is needed to better understand the

best way to micro-found and analyze the properties of zt. Asset prices would seem to be a

reasonable avenue of research and are the subject of ongoing research by the authors.

5 Conclusion

This paper provides empirical estimates of the natural rate of interest based on the well-

known Laubach and Williams (2003). We extend their work in two ways: we estimate all

the model parameters jointly and we explore alternative specifications for the unobserved

processes that compose the natural rate. By using Bayesian methods to fully incorporate

parameter uncertainty in a single-step estimation procedure, we obtain richer time-series

dynamics of r∗ under the Holston, Laubach, and Williams (2016) model specification. Our

estimation shows deeper drops during recessions—and subsequently larger increases during

recoveries—than the estimates obtained from the standard 3-step MLE procedure of Stock

and Watson (1998). Our median path of the natural rate also shows a different trajectory

since the end of the great recession and we obtain an increase since the trough in 2008,

in contrast to the “non-recovery” displayed of the U.S. estimate in Holston, Laubach, and

Williams (2016). We explore alternative specifications without permanent shocks on the

non-growth component of r∗ and find an elevated level of the median estimate after the

great recession, roughly 1.5% higher than that of Holston, Laubach, and Williams (2016) in
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the third quarter of 2016. The dynamics of the non-growth component are hard to estimate,

a finding which mirrors the original results of Laubach and Williams (2003) as well as Kiley

(2015). When this process is stationary, we estimate a greater recovery of the natural rate

since the lows of the great recession, reaching 1.8% at the end of the third quarter of 2016.

We therefore infer that permanent shocks to the non-growth component of the natural rate

are needed to produce a persistent low level of r∗ after the great recession.
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A State Space Structure

Based on the system of equations (2.1) to (2.6), substituting the formula for r∗t into the

output gap equation (2.1) and expanding, we can come to a version of these equations that

can be expressed in the traditional observation/transition equation style of the standard

state space model. Following some algebraic manipulation, these equations are given as

follows. First, the observation equations on real GDP and inflation.

yt = y∗t − a1y
∗

t−1 − a2y
∗

t−2 − 2arρggt−1 − 2arρggt−2

−
ar

2
ρzzt−1 −

ar

2
ρzzt−2 − 4arµg(1− ρg) + a1yt−1

+a2yt−2 +
ar

2
rt−1 +

ar

2
rt−2 + σ1ε1,t (A.1)

πt = −bY y
∗

t−1 + bY yt−1 + b1πt−1 + (1− b1)
4

∑

i=2

πt−i

3
+ σ2ε2,t (A.2)

Then, the transition equations for unobserved potential real GDP, its growth rate, and the

z process.

y∗t = y∗t−1 + µg(1− ρg) + ρggt−2 + σ5ε4,t (A.3)

zt−1 = ρzzt−2 + σ3ε3,t−1 (A.4)

gt−1 = ρggt−2 + µg(1− ρg) + σ5ε5,t−1 (A.5)

These equations can be represented in state space form using the standard structure:

st = Ast−1 + But + Cwt (A.6)

xt = Dst + Fut +Gwt (A.7)
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where:
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F =







−4ar(1− ρg)µg a1 a2
ar
2

ar
2

0 0

0 bY 0 0 0 b1 (1− b1)






, G =







σ1 0 0 0 0

0 σ2 0 0 0







The ε’s are all assumed to be i.i.d. N(0, 1) variables, with the standard deviation of the

processes controlled by the σi’s.
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